Room Temperature and Reduced Pressure Chemical Vapor Deposition of Silicon Carbide on Various Materials Surface
نویسندگان
چکیده
At room temperature, 300 K, silicon carbide film was formed using monomethylsilane gas on the reactive surface prepared using argon plasma. Entire process was performed at reduced pressure of 10 Pa in the argon plasma etcher, without a substrate transfer operation. By this process, the several-nanometer-thick amorphous thin film containing silicon-carbon bonds was obtained on various substrates, such as semiconductor silicon, aluminum and stainless steel. It is concluded that the room temperature silicon carbide thin film formation is possible even at significantly low pressure, when the substrate surface is reactive.
منابع مشابه
Fabrication of Sic Mems Pressure Sensor by Anodic Bonding
Due to its outstanding chemical stability and mechanical properties, silicon carbide (SiC) is one of the best materials for harsh environment applications. In this work, bulk micromachining technique was utilized to fabricate a PECVD SiC pressure sensor. This technique simplified the process and solved the stickiness problem in surface micromachining. The whole fabrication temperature is under ...
متن کاملSynthesis and Characterization of Nanocrystalline Silicon Carbide Thin Films on Multimode Fiber Optic by means 150 MHz VHF-PECVD
In recent years, a number of advantages such as modification of nano-crystalline thin films, the ability for low-temperature deposition processes, the controlling of process, as well as high efficiency and repeatability of process, were offered using plasma deposition technique [1]. Silicon carbide (SiC) as a leading candidate for the replacement of Silicon (Si) for hightemperature and power el...
متن کاملSynthesis and Characterization of Nanocrystalline Silicon Carbide Thin Films on Multimode Fiber Optic by means 150 MHz VHF-PECVD
In recent years, a number of advantages such as modification of nano-crystalline thin films, the ability for low-temperature deposition processes, the controlling of process, as well as high efficiency and repeatability of process, were offered using plasma deposition technique [1]. Silicon carbide (SiC) as a leading candidate for the replacement of Silicon (Si) for hightemperature and power el...
متن کاملCarbon nanotube array thermal interfaces for high-temperature silicon carbide devices
Multiwalled carbon nanotube (MWCNT) arrays have been directly synthesized from templated Fe2O3 nanoparticles on the C-face of 4H-SiC substrates by microwave plasma chemical vapor deposition (MPCVD), and the room-temperature thermal resistances of SiC-MWCNT-Ag interfaces at 69–345 kPa as well as the thermal resistances of SiCMWCNT-Ag interfaces up to 250 C (at 69 kPa) have been measured using a ...
متن کاملHigh-rate chemical vapor deposition of nanocrystalline silicon carbide films by radio frequency thermal plasma
Silicon carbide films were deposited by radio frequency thermal plasma chemical vapor deposition (CVD) at rates up to several hundred micrometers per hour over a 40-mm diameter substrate. The films were primarily h-phase SiC. Film morphology was characterized by columnar growth terminating in hemispherical surfaces. The average crystallite size as determined by X-ray diffraction line broadening...
متن کامل